Efectueaza o cautare in website!

Informaţii, definiţii, teoreme, formule, exerciţii şi probleme rezolvate din matematica de liceu.

Data publicarii: 15 Aprilie, 2012

FUNCTIA DE GRADUL AL DOILEA

Definitie:

Orice functie de forma

f:R - > R, f(x) = ax² + bx + c, unde a, b, c sunt numere reale, iar a este nenul,

se numeste functie de gradul al doilea. 

Graficul sau este o parabola, a carei pozitie (fata de axele de coordonate) depinde de

semnul coeficientului dominant a si de coordonatele varfului V(-b/2a;-Δ/4α),

unde Δ = b² - 4ac reprezinta discriminantul ecuatiei atasate functiei, anume:

ax² + bx + c = 0.

  • In functie de semnul coeficientului a avem urmatoarele cazuri:

1) a > 0 : functie convexa, care prezinta minimum, egal cu 

f(-b/2a) = -Δ/4α;

2) a < 0 : functie concava, care prezinta maximum, egal cu 

f(-b/2a) = -Δ/4α.

  • In functie de semnul discriminantului Δ, avem cazurile:

1) Δ < 0 : parabola reprezentativa nu intersecteaza axa absciselor;

2) Δ = 0 : parabola reprezentativa este tangenta axei absciselor, in punctul avand

abscisa egala cu radacina dubla a ecuatiei atasate;

3) Δ > 0 : parabola reprezentativa intersecteaza axa absciselor in 2 puncte

distincte, abscisele acestora fiind radacinile ecuatie atasate, anume ax² + bx + c = 0.

Graficele corespunzatoare cazurilor de mai sus se prezinta astfel:

Aplicatie:

Enunt:

Sa se determine functia de gradul al doilea al carei grafic este tangent axei absciselor

in punctul A(3;0) si intersecteaza axa ordonatelor in punctul B(0;3).

Sa se traseze, apoi, graficul functiei f.

Rezolvare:

Fie functia de gradul al doilea f:R - > R, f(x) = ax² + bx + c.

Din enuntul problemei rezulta ca punctul A este varful parabolei reprezentative si ca

f(0) = 3; rezulta -b/2a = 3, Δ = 0 si c = 3.

Din  Δ = 0 si c = 3 deducem b² - 4ac =  b² - 12a = 0, deci trebuie rezolvat sistemul:

\begin{cases}-\frac{b}{2a}=3\\b^2-12a=0\end{cases}.\begin{cases}-\frac{b}{2a}=3\\b^2-12a=0\end{cases}.

Se obtine b = -6a si 36a² - 12a = 0; intrucat a este nenul, rezulta a = 1/3 si b = -2.

Functia este, deci, definita prin legea

f:R - > R, f(x) = (1/3)x² - 2x + 3,

iar graficul sau se prezinta astfel:


Adăugaţi un comentariu

Adăugaţi un comentariu
Introdu codul din imagine

Răspunsuri şi comentarii

hmmm...

timeea, 24.05.2014 12:13

Superb si extrem de usor

Răspuns: 0

 

CATEGORII :


Arhiva blog-ului

 

 

http:// www.supermatematic


Developed by Hagau Ioan