Efectueaza o cautare in website!

Informaţii, definiţii, teoreme, formule, exerciţii şi probleme rezolvate din matematica de liceu.

Data publicarii: 27 Martie, 2011

5) ARII

Aria suprafetei triunghiului:

1)\;\mathcal{A}=1)\;\mathcal{A}= \frac{{a}\cdot{{h}_{a}}}{2}=\frac{{a}\cdot{{h}_{a}}}{2}= \frac{b\cdot{h_b}}{2}=\frac{b\cdot{h_b}}{2}= \frac{{c}\cdot{{h}_{c}}}{2};\frac{{c}\cdot{{h}_{c}}}{2};

2)\;\mathcal{A}=2)\;\mathcal{A}= \frac{{ab}\cdot{sinC}}{2}=\frac{{ab}\cdot{sinC}}{2}= \frac{{bc}\cdot{sinA}}{2}=\frac{{bc}\cdot{sinA}}{2}= \frac{{ca}\cdot{sinB}}{2};\frac{{ca}\cdot{sinB}}{2};

3)\;\mathcal{A}=\frac{{a^2}\sin{B}\sin{C}}{2\sin{A}}=\frac{{b^2}\sin{C}\sin{A}}{2\sin{B}}=\frac{{c^2}\sin{A}\sin{B}}{2\sin{C}};3)\;\mathcal{A}=\frac{{a^2}\sin{B}\sin{C}}{2\sin{A}}=\frac{{b^2}\sin{C}\sin{A}}{2\sin{B}}=\frac{{c^2}\sin{A}\sin{B}}{2\sin{C}};

4)\;\mathcal{A}=\sqrt{p(p-a)(p-b)(p-c)},\;unde\; p = \frac{a+ b +c}{2}.4)\;\mathcal{A}=\sqrt{p(p-a)(p-b)(p-c)},\;unde\; p = \frac{a+ b +c}{2}.

       (formula lui Héron)

Aria suprafetei patratului:                

A = l².

Aria suprafetei dreptunghiului:      

A = L·l.

Aria suprafetei paralelogramului:  
     

A = b·h.

Aria suprafetei rombului:                 
      
A = D·d.

Aria suprafetei trapezului:              

\mathcal{A}=\frac{{(\mathcal{B}+b)}\cdot{i}}{2}.\mathcal{A}=\frac{{(\mathcal{B}+b)}\cdot{i}}{2}.

Aria suprafetei cercului:                  

{\mathcal{A}}_{cerc}=\pi{R}^{2};{\mathcal{A}}_{cerc}=\pi{R}^{2};

Aria suprafetei sectorului circular:

{\mathcal{A}}_{sect}=\frac{{\pi}{R^2}{n^\circ}}{{360}^{\circ}}=\frac{{\mathit{l}_{arc}}\cdot{R}}{2}.{\mathcal{A}}_{sect}=\frac{{\pi}{R^2}{n^\circ}}{{360}^{\circ}}=\frac{{\mathit{l}_{arc}}\cdot{R}}{2}.


Adăugaţi un comentariu

Adăugaţi un comentariu
Introdu codul din imagine

Răspunsuri şi comentarii

Până acum, niciun comentariu nu a fost adăugat.

 

CATEGORII :


Arhiva blog-ului

 

 

http:// www.supermatematic

Developed by Hagau Ioan